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M
etallic nanostructures are unique
nanophotonic functional elements.
Their elementary polaritonic exci-

tations, the localized surface plasmon (LSP)
modes,1,2 combine collective oscillations of
the metallic electron gas with optical field
oscillations. These surface plasmons exhibit
light concentration to length scales substan-
tially below the diffraction limit.3,4 Planar
and interfacemetallic geometries have been
extensively studied in the literature for their
possibility of supporting the so-called long-
range plasmons, either in the form of surface
plasmons,5 channel plasmons,6 or wedge
plasmons.7,8

Spectroscopy techniques detecting the
energy loss of relativistic electron probes
(EELS, electron energy-loss spectroscopy) in
electron microscopes were among the pio-
neeringmethods to unravel the existence of
plasmon oscillations at metal surfaces.9�13

Since then, these techniques have improved,
in both energy and spatial resolution, to
become one of the best methods of acquir-
ing plasmon resonances of single metallic

nanostructures.14�19 EELS has been exten-
sively studied in the literature theoretically
and experimentally and is well-known for its
ability to unravel the local density of optical
states (LDOS)20 projected along the electron
trajectory. However, it is exactly this projec-
tion that sets an interesting selection rule for
EELS since in inelastic electron scattering the
momentum transfer from the electron to the
specimen and vice versa is huge.21 Moreover,
when the dimension of the specimen along
the electron trajectory is mesoscopic rather
than nanoscopic, a dynamic interchange of
momentum and energy between the elec-
tron and specimen can take place, as will be
shown here.
Using EELS, we study three-dimensional

single-crystalline gold tapers. These tapers
have demonstrated the ability of nano-
localizing the optical density of states at
the apex by effectively coupling the surface
plasmons along the shaft to the localized
plasmons of the apex.22�24 Indeed, efficient
coupling and nanolocalization is possible
only by the presence of the proper optical
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ABSTRACT We investigate the optical modes in three-

dimensional single-crystalline gold tapers by means of electron

energy-loss spectroscopy. At the very proximity to the apex, a broad-

band excitation at all photon energies from 0.75 to 2 eV, which is the

onset for interband transitions, is detected. At large distances from

the apex, though, we observe distinct resonances with energy

dispersions roughly proportional to the inverse local radius. The

nature of these phenomena is unraveled by finite difference time-

domain simulations of the taper and an analytical treatment of the

energy loss in fibers. Our calculations and the perfect agreement

with our experimental results demonstrate the importance of phase-matching between electron field and radiative taper modes in mesoscopic structures.

The local taper radius at the electron impact location determines the selective excitation of radiative modes with discrete angular momenta.

KEYWORDS: photonic local density of states . gold taper . plasmons . electron energy-loss spectroscopy . numerical simulations
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modes that the gold taper sustains. These modes
provide a smooth and diffraction-free transfer of the
energy to its rotationally symmetric fundamental
mode at the apex.25 Here, we study the coupling of
swift electrons to the optical modes of the taper and its
implications for the nanofocusing of surface plasmons.
We selectively choose a gold taper with an extreme

change in the local radius of the cross section, from the
very nanometer scale at the apex toward the meso-
scopic scale along the shaft. We show that this dimen-
sional aspect reveals an interesting selection rule for
the electron�plasmon inelastic interaction. While at
the very apex we can excite the rotationally symmetric
optical mode with an extremely broad bandwidth,
this mode is not efficiently excited along the shaft
for a gold taper with a large opening angle. Rather,
we detect the radiative modes of the gold taper along
the shaft. Intriguingly, the excited modes dynamically
interact with the swift electron in such a way that an
interference pattern emerges in the EELSmap, display-
ing energy versus impact parameter. We underpin
our interpretation by analytical calculations of the
EEL spectra. We compare the data with the analytically
calculated EELS of gold fibers. Considering all the
observations, we propose a simple model for under-
standing the dispersion of the higher-order resonances
we observe in EEL spectra by imposing a phase-
matching criterion.

RESULTS

We use single-crystalline gold tapers, whose particu-
larly smooth surfaces eliminate surface plasmon polar-
iton (SPP) localization26 and scattering losses along the
taper shaft. Figure 1a shows a dark-field transmission
electron microscope image of a taper with an opening
angle of R = 49�. Experimental and simulation results
for a gold taper with a smaller opening angle of 19� are
also shown in the Supporting Information.
EELS and energy-filtered transmission electron

microscopy (EFTEM) experiments were conducted at
the Zeiss SESAMmicroscope27 operated at an accelera-
tion voltage of 200 kV.
The EELS signal reflects the probability of the elec-

tron beam to excite surface plasmons during the
interaction with the sample and thus senses the LDOS
projected onto the trajectory of the electron.20 EELS
allows measuring this LDOS from a few tens of milli-
electronvolts to hundreds of electronvolts and thus is
ideally suited for probing ultra-broad-band excitations.
Figure 1b shows images at selected energy losses
extracted from a series of EEL spectra with a spatial
resolution of just 50 nm. Already, these overviewmaps
exhibit a spatially well-localized energy-loss signal
at the taper apex for energy losses below 2 eV. At
higher energies, interband absorption in gold sets in,28

resulting in a spatially homogeneous EELS signal in
the vicinity of themetal surface. At lower energy losses

(E = 0.75 to 1.35 eV), we find an additional pronounced
EELS signature as bright lobes penetrating from the
shaft surface into the vacuum. These lobes are con-
fined to a region of a few hundred nanometers along
the shaft and are markedly displaced from the apex.
As discussed below, this can be related to taper
eigenmodes with higher-order angular momentum.
The broad-band ability of those tapers to localize light
in exceedingly small volumes at the apex is seen in a
series of EEL spectra recorded at various positions along
the shaft (Figure 2b) for a gold taper with the opening
angle of 49�. Near the apex, an intense, spatially localized
and spectrally broad-band EELS signal emerges, reflect-
ing the confined LSPs at the taper apex. Interestingly,

Figure 1. (a) Dark-field transmission electron microscopy
imageof a taperwith an opening angle ofR=49�; the above
inset shows the three-dimensional topology of the taper. (b)
Images of the electron energy-loss intensity at six selected
energy losses between 0.75 and 2.25 eV. These data are
extracted from a series of 30 � 28 EEL spectra that were
recorded at electron impact locations on a rectangular grid
with a pixel size of 50 nm. The color scales of the images are
given in linear arbitrary units. Scale bar lengths are 500 nm.

Figure 2. Imaging and spectroscopy of a gold taper with an
opening angle of R = 49�. (a) Zero-loss-corrected electron
energy-loss intensity as a function of impact location along
the taper shaft. At certain distances, L, between electron
impact and taper apex, pronounced resonance peaks are
revealed. The length of the scale bar is 1 μm. (b) EELS for
electron impact at the apex (purple) and at distances of
276 nm (black), 506 nm (green), 736 nm (red), and 966 nm
(blue) from the apex. The spectra are shifted vertically for
clarity. The zero-loss peak contributionwas subtracted from
the individual spectra by using a power-law fit. (c) Disper-
sions of maxima in EEL spectra versus the distance from the
taper. These maxima are denoted by their corresponding
mode numbers (m = 1, 2, ...). Curves are least-squares fits
to a hyperbolic function E = E0 þ κ/L, where κ and E0 are
constants.
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its intensity remains almost constant within the range
from∼0.75 eV, a lower limit imposed by the difficulty of
subtracting the zero-loss peak, to ∼2.0 eV, the onset
of interband absorption. As such, the bandwidth of
this resonance covers more than one octave, in distinct
contrast to the spectrally narrower LSP resonances of
metallic nanoparticles and also to earlier EELS measure-
ments on conical tapers of finite length.29

When moving the electron excitation away from
the apex, the EELS signal vanishes entirely, until, at a
finite distance from the apex, a second contribution
sets in, leading to a sequence of distinct maxima in the
energy-loss spectra (Figure 2b) at energy losses below
2 eV. The spectral width of these resonances is in the
range of a few hundredmillielectronvolts. As displayed
in Figure 2c, for each individual resonance in this
sequence, the dispersion is well represented by a
hyperbolic function of the form E = E0 þ κ/L, with L =
R/sin(R/2) being the distance from the apex and R

being the local radius. Remarkably, the fitting para-
meters depend on the sequence numberm in a linear
fashion, resulting in the empirical relation

E ¼ (0:105m � 0:098) eVþ (0:139m� 0:014)
R

μm 3 eV

(1)

As will be shown below, this resonance behavior is a
consequence of phase-matching between the exciting
electron and the local taper mode fields. The parame-
term is directly related with the angular momentum of
eigenmodes with higher-order azimuthal symmetry.

Numerical Results. In order to understand the physics
behind our experimental observations, we have to
consider the whole set of possible eigenmodes of
the system. Scattering by conical structures has been
studied in numerous works for decades.30,31 Explicit
solutions are still the subject of ongoing research,
involving rather advanced applications of integral
transforms32 or novel approximation methods based
on quasi-separation of variables.33 Here, we adopt the
more intuitive stance of viewing the metallic cone as
a three-dimensional taper formed from metallic fiber
segments of infinitesimal height. Particularly, the local
near-field behavior of taper eigenmodes can be de-
scribed effectively by a superposition of the eigenmodes
of fibers with continuously varying radii. The fiber eigen-
modes are calculated by solving the Helmholtz equation
in a cylindrical coordinate system.34,35 They are charac-
terized by the complex wavenumber kz along the fiber
axis and the azimuthal angular momentum number
m = 0, (1, (2, .... The mode field outside the fiber can
thus be derived from a potential of the form (see also
Supporting Information)

Φm, kz,ω(x, y, z, t)�H(1)
m (kFF)eikzzeimφe�iωt þ cc (2)

where Hm
(1) is the Hankel function of first kind, (F cos φ,

F sin φ) = (x,y), kF
2 = k0

2 � kz
2, and ω = c0k0 is the angular

frequency of the mode. It is well-known that only the
fundamental m = 0 mode of a metallic taper is evanes-
cently bound to the surface regardless of local radius.36,37

It propagates to the apex with high efficiency and with
a concomitant increase in the effective refractive index
and hence the localization of light.22,38 This process
requires a smooth transition of the local radius of the
taper. In addition to the propagatingm = 0 mode, there
are higher-order modes, characterized by |m|g 1, which
may also propagate with low loss toward the apex as
bound modes, at least where the local radius is larger
than a mode-specific critical value. At the critical radii,
however, they couple to the radiative (unbound) con-
tinuum of photonic modes. For instance, on a gold taper
excited at a vacuum wavelength of 800 nm, the critical
radii of the |m| = 1 and |m| = 2 mode are approximately
R ≈ 100 nm and R ≈ 600 nm, respectively.25 It should
be noted that, in addition to the modes mentioned
above, for any given parameter pair {m,ω}, there exists
a continuum of discrete values in the complex kz plane
that satisfy the eigenmode equation. They are character-
ized by rapidly increasing imaginary parts, and the
corresponding modes may contribute to an acute loca-
lization along the taper shaft but decay quickly upon
propagation. That is because they sustain oscillatory
amplitude inside the core along the radial direction,
though evanescent in the air region. In order to under-
stand if and how these features of a local fiber descrip-
tion of a plasmonic taper may be used to explain the
experimentally observed EELS results, we discuss in the
following the first numerical simulations of the electron
energy-loss process near three-dimensional taper
structures. These and the experimental results are then
compared to an analytical model for EELS near fibers,
which allow a detailed discussion of the individual
contributions of different kz and m components.

We perform numerical finite-difference time-do-
main (FDTD) calculations of three-dimensional tapers
with an embedded relativistic electron source.39�41

The electron is assumed to pass the taper on a straight
line 1 nm from its surface. The speed of V ≈ 0.695c0 is
chosen (unless specified otherwise) in correspondence
with the acceleration voltage of 200 kV used in the
experiments. Figure 3a displays an instantaneous dis-
tribution of the Ez (rB,t) field component on the taper
surface at a moment about 1 fs before the electron
approaches closest to the taper, about 900 nm from
the apex. Further time frames from the same simula-
tion are shown in Figure 3c for cross sections normal to
the taper axis. Full movies of the entire interaction time
are available in the Supporting Information. An analysis
of the spatial and temporal evolution of the fields
in such simulations reveals two main features. First, a
wave packet of radiation emerges from the interaction
volume as an almost spherical, ultrashort light pulse,
propagating away freely from the electron at approxi-
mately vacuum speed of light. Second, a comparatively
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minor part of the transferred energy is converted into
evanescent surface modes that continue to propagate
along the z axis. Evidently, the electron impulsively
launches a wave packet composed of modes in a very
broadenergy range,with awide distributionof azimuthal
orders m and wavenumbers kz along the taper axis. For
the local radius ofR= 344nmat the electron impact, only
fibermodeswithm=0and |m| = 1 exhibit (locally) bound
character and may propagate along the taper shaft.
Other modes are either unbound (contributing to the
free light pulse) or strongly evanescent along the taper
shaft aswell as normal to the surface. The full distribution
of the evanescent and radiative modes at each local
radius of the taper is discussed below.

In Figure 3b, calculated EEL spectra are shown for
different distances L from the taper apex. Clear signa-
tures of discrete resonances emerge, in full accord with
the experimental findings displayed in Figure 2a. At
this point, however, the time domain calculations by
themselves offer little further insight into the charac-
teristic hyperbolic dispersions of EELS probability
maxima as functions of the local taper radius.

We have therefore developed an analytical descrip-
tion of the electron energy-loss mechanism for
infinitely long fibers (see Supporting Information).
When the energy-loss probability is expanded into a
sum over mode order m and Fourier-analyzed in both
the kz and theω domain, we find the partial probability
is represented by

ΓEELS
m (kz,ω) ¼ (

�q

πpω
)R im

kF
2
e�imφe eikyy0

� f(� kz
ωε0

CD2
A, m(kz,ω)� iCD2

F, m(kz,ω))
Z þ¥

�¥
dxe

�i
ω

V
x
H(1)
m �1(kFF)e

i(m � 1)φ

þ (
kz
ωε0

CD2
A, m(kz,ω)� iCD2

F, m(kz,ω))
Z þ¥

�¥
dxe

�i
ω

V
x
H(1)
mþ 1(kFF)e

i(mþ 1)φg
(3)

Here, ε0 is the vacuumdielectric constant and q=�e0 is
the electron's charge. Abbreviating kx = ω/V, the wave
vector of the electromagnetic field, which is associated
with the moving electron, is described in the xy plane
with kF

2 = k0
2 � kz

2 = kx
2 þ ky

2 and tan je = �ky/kx. The
coefficient functions CA,m

D2 (kz,ω) and CF,m
D2 (kz,ω) repre-

sent the amplitudes of the electromagnetic fields
scattered by the fiber.

Equation 3 provides an instructive distinction be-
tween two very different mechanisms of obtaining
resonant EELS signals. The first factors are the scatter-
ing coefficients. Notably, all four coefficient functions
share the common resonance denominator (see Sup-
porting Information)

Δ ¼ kF

kD1
F

 !2

(kFH
(1)
m Jm

0 � kD1
F H(1)0

m Jm)(εrkFH
(1)
m Jm

0

� kD1
F H(1)0

m Jm)� kF

kD1
F

 !2

� 1

0
@
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Am
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kz
k0

H(1)
m Jm

2
4

3
5
2

(4)

The vanishing of this term is precisely the condition
for the eigenmodes of fibers.34,35 That is, whenever the
excitation due to the swift electron is such that the field
scattered by the fiber closely resembles an eigenmode,
the divergence of the scattering coefficients implies a
strong EELS signal.

A second curious feature of the fully expanded
EELS probability, Γm

EELS(kz,ω), is the integrals that are
evaluated along the electron trajectory, rB(x) = (x,y0,0) =
(F cos(φ), F sin(φ), 0). They have the form of an overlap
integralZ þ¥

�¥
dx[e�iωx=V ]� [H(1)

m( 1(kFF)e
i(m( 1)φ] (5)

with factors resembling the spatial part exp(�iωx/V) of
the Fourier component of the electron field at fre-
quencyω and that of fiber eigenmodes (cf. eq 2). Thus,
a resonant transfer of energy from the electron to the
plasmonic structure can be expected whenever these
two factors exhibit a closely matching spatial phase
pattern. This is indeed what we observe in the FDTD
calculations, as Figure 3d shows. For a fixed frequency
ω = 1.6 eV/p, the electron field oscillates along the
trajectory with a constant wavelength of about 539 nm

Figure 3. Dynamical simulation of the energy loss of rela-
tivistic electrons upon passing a gold taper with an opening
angle of R = 45�. The taper axis is denoted as z, and the
electron trajectory is assumed to be parallel to the x axis. (a)
Snapshot of the instantaneous component Ez of the total
electric field at the surface of the taper for an electron
impacting just outside the surface at a distance of L =
900 nm from the apex, corresponding to a local radius of
R=344nm. (b) ComputedEEL spectra as a functionof energy
loss and impact location along the taper shaft. The dashed
lines are guides for the eyes. (c) Series of instantaneous total
electric field distribution for several times during the pas-
sage of the electrons by the taper at L = 900 nm. The panels
show Ez(x,y,t) in an xy plane located δz = 5 nm behind the
electron trajectory. (d) Maps of the scattered electric field
component, Ez, at an energy loss of 1.6 eV for electron impact
at distances of L = 1 μm (left, R = 383 nm) and L = 1.6 μm
(middle, R = 612 nm) from the taper apex. The right panel
shows the plane wave component kx = ω/V = 11.7 rad/μm
(2π/kx = 539 nm) of the electric field associated with the
relativistic electron, which corresponds to an energy of 1.6 eV.
Scale bars are 500 nm.
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(right panel). Fourier transforms of the FDTD results
to the frequency domain, evaluated for the same
frequency ω, show that the scattered fields are parti-
cularly strong only when the electron passes the taper
at specific local radii (left two panels). The field dis-
tributions, in turn, resemble the mode field patterns of
individual fiber modes (here for m = 4 and m = 6), but
not exactly, since the interaction of the electron with
the taper involves a multitude of eigenmodes.

An approximate selection rule for observing phase-
matching resonance in EELS of fibers follows from find-
ing a condition for which the overlap integral (eq 5)
attains maximal values. A crude estimate is obtained if
the integral is evaluated only over a certain “interaction
length”, where the integrand attains its largest magni-
tude, that is, close to the fiber. This truncated interval
becomes maximal when the phases of the electron
field and the fiber mode field match over the interac-
tion length. The (unrealistic) assumption that the inter-
action length extends only over small angles φ= arctan
(x/y0) ≈ x/R leads to the condition

pω � (m( 1)
pV

R
(6)

In comparing this to the empirical result fromFigure 2a,
eq 1, we find that this expression already captures
the qualitative features quite well. The hyperbolic
functional relation between the resonance energy
and the local radius is found with a scaling factor of
pV = 0.137 μm 3 eV, which is remarkably close to the
empirical value of 0.139 μm 3 eV. As in the experiment,
we find equidistant energy spacing between successive
resonances at a given local radius. Nevertheless, a
quantitative agreement with the experimental data is
not achieved by this simplistic phase-matching condi-
tion, indicating the need for amore extensive analytical
treatment of eq 5 for much longer interaction lengths.

DISCUSSION

Whereas in EELS experiments the loss probability is
dispersed only into its energy spectrum, eq 3 affords us
with the opportunity of expanding it further into its
angular momentum about the fiber axis and the linear
momentum along the fiber axis. Figure 4b shows a
momentum-resolved EELS (MREELS) map, calculated
for a gold fiber with a small radius of R = 50 nm and
summed over all the m orders. Figure 4c shows in-
dividual MREELS maps for angular mode orders m = 0
andm = 1. Evidently, the rotationally symmetricm = 0
mode is the dominant contribution to the sum. The
solutions to the characteristic eq 4 are shown by the
dashed line in the figure panel. In fact, them = 1 mode
contributes strongly only at energies above 2.0 eV,
where the volume plasmon in gold is excited. The EELS
signal of this comparatively thin fiber closely resembles
them= 0 eigenmode dispersion with a narrow spectral
width of less than 100 meV. It is due mainly to the

resonant denominator of eq 4. Phase-matching reso-
nances according to eq 5 are not relevant.
However, this situation changes drastically when

the gold fiber has a larger radius, which increases the
effective “interaction length”. In Figure 4d, the calcu-
lated MREELS map is shown for a fiber of radius R =
400 nm. Somewhat surprisingly, these are the radiative
modes;characterized by kz < k0, where k0 = E/pc is the
vacuumwavenumber of light;that dominate the total
EELS signal. Significant contributions due to the bulk
plasmon are observed again for energies above 2.0 eV,
and the evanescent contributions (for kz > k0) are
negligible in comparison, with only faint hints of fiber
eigenmode resonances for lower values of |m|. The EEL
spectra for individual angular momentum orders, as
shown in Figure 4e, unravel the physics behind the
experimentally observed resonances in the EEL spectra.
In fact, the radiative part of the EEL spectra at each
momentum contribution exhibits a clear peak versus

energy, the position ofwhichdepends onm. The spectral
width of these resonances of a few hundred millielec-
tronvolts is in accord with that of the experimentally
observed resonances. Consequently, for such larger radii,
the EELS signal is mostly influenced by the spatial phase-
matching along the electron trajectory, much less by
resonances due to excitation of fiber eigenmodes.

Figure 4. (a) Swift electron interacting with a metallic fiber
can excite both evanescent SPP modes that propagate along
the fiber as well as radiativemodes of the fibers with different
angularmomentumnumbers. The color scalewas normalized
individually for each panel. Calculated MREELS maps versus
the linear momentum along the axis of a gold fiber, (b) for a
fiber radius of R = 50 nm summed over all the angular
momentum contributions, (c) for the individual excited angu-
larmomentumordersm = 0 andm = 1, (d) for a fiber radius of
R = 400 nm summed over all the angular momentum con-
tributions, and (e) for individual excited angular momentum
orders m = 0, 2, 4, 6 as indicated in each panel. The straight
dashed lines indicate the light line (E = pc0kz) and the dashed
curvesm = 0 (b) andm = 0, 2 (d) are traces of the correspond-
ing fiber eigenmodes dispersions,R(kz(E)).
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To further underpin our interpretation, we have calcu-
lated the EEL spectra for increasing fiber radius, from R =
40 nm to R = 800 nm, thus representing the taper in the
local radius approximation. Figure 5a shows the total
computed EELS intensity, summed overm and integrated
over kz. At low energy loss, we find that bound eigen-
modes of the fiber are very dominant. Experimentally,
though, we do not observe sharp fibermode-like reso-
nance dispersions because the taper with its opening
angle of 49� deviates too strongly from the geometry of
fibers. Taperswithamuchshalloweropeningangle (below
10�) would be required for that. Indeed, a taper with an
opening angle of 49� cannot support the fiber eigen-
modeswithm>0since suchmodeswill couple strongly to
the radiation continuum. The resultingmap of energy-loss
probability versus energy and local radius is displayed
in Figure 5b. Its resemblance with the experimental data
from Figure 2 is striking. For a one-to-one comparison,
circles mark selected experimentally observed resonance
maxima in Figure 5b. This is a strong indication that the
nearly hyperbolically dispersed resonancemaximaaredue
to phase-matching over extended parts of the electron
trajectory, as suggested by the overlap integral (eq 5).

A final proof of this conclusion is presented in Figure 5c,
where individual panels for azimuthal ordersm = 0�8 are
shown. Clearly, each of the observed resonance disper-
sions is associated with a different order.

CONCLUSION

In summary, EELS maps were recorded along the shaft
of conical gold tapers. At theapex, these confirmtheultra-
broad-band ability of such tapers to concentrate light into
nanometric volumes. At remote locations along the shaft,
surprising resonance dispersions are found. All these
observations are confirmed by FDTD calculations. For
deeper insight into their nature, we adopt the framework
of viewing the taper as composed of infinitesimal fiber
segments and develop an analytical expression for the
EELS signal from fibers. Besides the possibility of exciting
eigenmodes, a phase-matching condition is identified,
which also results in the emergence of resonance
maxima. In the application of this analysis, we identify
the scattering of radiative modes as being responsible
for the observed resonance dispersions. Our results thus
verify the excitation of modes with certain angular
momentum orders, placing emphasis on the crucial role
phase-matching plays in the interpretation of EELS data.
It should be noted that reflection from the apex

can alsomodulate the EELS signal due to the formation
of a standing wave along the taper shaft. However,
as apparent from the movies provided as Supporting
Information, the contribution of the reflection from
the apex is much weaker than the contribution of the
radiative modes and has minor importance under our
experimental conditions.
Our findings highlight an important caveat to the

well-known intimate relation between EELS probabil-
ities and the projected LDOS near a specimen under
study. Strictly, these two quantities are proportional
only for structures that are translationally invariant
(or periodic) along the electron trajectory.20 Also, in
thin planar sample geometries, the EELS probability
closely mimics the LDOS of the structure. Generally,
though, for finite sample structures with dimensions
along the electron trajectory that are larger than the
inversewavenumber 1/kx= V/ω of the electromagnetic
fields of the electron along this direction, phase-
matchingmust be taken into consideration, and results
do depend on the electron speed. Moreover, specific
electron velocities are required to couplewith radiative
modes withm > 1 inmesoscopic metallic fibers, tapers,
and spheres; specifically, electrons at energies lower
than 100 keV cannotdetect the kindof phase-matching-
related resonances observed in the present study.

METHODS

Sample Preparation. Single-crystalline gold tapers have
been produced using the method described previously.24

Polycrystalline gold wires with a diameter of 125 μm were

annealed at 800 �C for 8 h. The wires were then electrochemi-

cally etched in hydrochloric acid (aq. 37%). Rectangular voltage

Figure 5. Computed electron energy-loss probability as a
function of energy loss and fiber radii, (a) including and (b)
excluding the contribution of the evanescent modes with
kz > k0. The electron is traveling at a distance of 1 nm from
the surface. Experimental data are depicted with solid
circles. The dashed lines track the maximum EELS signal
according to eq 3 for given radius and mode order. (c)
Computed EEL spectra from each angularmomentumorder.
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pulses with a frequency of 3 kHz and a duty cycle of 10% were
applied between the wire and a platinum ring, serving as the
counter electrode.

EELS. EELS and energy-filtered transmission electron micro-
scopy (EFTEM) experiments were conducted at the Zeiss SESAM
microscope27 operated at an acceleration voltage of 200 kV. The
microscope is equipped with an electron monochromator
(CEOS Heidelberg) and the MANDOLINE energy filter. EELS data
were acquired with an energy resolution of 90 meV as deter-
mined from the full width at half-maximum of the zero-loss
peak (ZLP). The acquisition time was 0.2 s per spectrum, and the
energy dispersion was 4.5 meV/pixel. The energy-loss spectrum
was dispersed perpendicular to the energy-dispersive direction
on the CCD camera in order to make the full dynamic range of
almost 1000 between ZLP and plasmonic peaks accessible
without saturating the camera.

FDTD Simulations. In order to perform the FDTD simulations
with electron probes, a charge broadening scheme has been
introduced, as described previously.39,41 The whole simulation
domain has been discretized by unit cells of 5 nm edge lengths.
The permittivity of the gold taper is modeled by a Drude
model in addition to two other critical functions that effectively
model the interband transition28 and perfectly matches the
experimental data within the energy range of 0.4�3 eV.
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